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A genera l  method is worked out for  t r ans fo rming  the output curve  (of the t empe ra tu r e  or  con-  
centrat ion) for a bed of width h i into the output cu rves  for  beds  of any other  width hm, where  
h m ~ h i. 

We are  concerned here  with ce r ta in  quest ions which a r i s e  in ~ connection with the heat and m a s s  t r a n s -  
fer  as a liquid or  gas moves  through a bed of solid par t i c les .  

In the case  of heat t r a n s f e r ,  the bed is heated or  cooled, and the gas or  liquid moving through the bed 
is  also heated or  cooled; in the case  of m a s s  t r a n s f e r ,  m a t e r i a l  is  e i ther  ex t rac ted  f rom or  absorbed by 
the porous  pa r t i c les  of the bed. 

We use the t e r m  "output curve"  to r e p r e s e n t  the t ime dependence of the t e m p e r a t u r e  tin the case  of 
heat t r ans fe r )  or  concentra t ion (mass  t r ans fe r )  of the medium leaving the bed. The re  has been much 
theore t ica l  work  on these p r o c e s s e s  [1, 3, 4], but it has been based  on s eve ra l  assumpt ions  which are  f r e -  
quently dubious. F o r  example ,  the pa r t i c l e s  have been assumed spher ica l ,  and the one-d imens iona l  p ro -  
b lem has been t rea ted  [3, 4]. This  approach impl ies  that the t e m p e r a t u r e  or  concentra t ion within a par t ic le  
is  a function of the rad ius  only. Such assumpt ions  would be justified if the conditions under which the heat 
or  m a t e r i a l  is ex t rac ted  at the boundary of the sphere  were  the s ame  at all  points of the sphere .  It  is easy  
to see that this is not the case  where  the pa r t i c les  touch each other .  Other impor tan t  fac tors  in heat and 
m a s s  t r a n s f e r  a re  the inhomogeneity of the pa r t i c l e s ,  the anisot ropy,  d i f fe rences  in par t ic le  s ize ,  and 
other  fac to rs ,  which have not been included in the exis t ing theore t ica l  models  for these p r o c e s s e s .  

Since even the s imples t  models  a r e  compl ica ted ,  it is  an ex t r eme ly  difficult p rob lem to match the 
model  with the par t icu la r  exper iment  and thus find the kinetic coeff ic ients .  These  diff icult ies  led to the 
suggestion that the informat ion contained in the exper imenta l  output curve  for a bed of width h I be used to 
predic t  p r o c e s s e s  in a bed of any other  width h m,  where  h m ~ h i [1]. 

The genera l  t r ans fo rma t ion  method can be outlined as follows: if  f1(t) and fro(t) a re  the output curves  
for beds  of the s ame  "quality" but different  widths,  then they a re  re la ted  by [1] 

(t):= L-1 { L tpF1 (p)lml, <1) 
P, J 

where  F l(p) = L[f l(t)] is the Laplace t r a n s f o r m  of the function fl (t). 

Let us a s s um e  that the output curve  fl(t) has been found exper imenta l ly .  For  t r ans fo rma t ions  in 
accordance  with Eq. (1) the function fl(t) is  approximated by a sum of exponential  functions, 

N 

fl (t) : I - -  ~ A, exp (--  ~ht); (2) 
i = l  

rn 

1 (1_ A~p 
F m ( p ) = P  i=, P - T ~  ) 

then a Laplace t r ans fo rma t ion  yie lds  

(3) 
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Fig.  i .  Output concentrat ion curves  for beds of va-  
r ious widths: 1) h I = 0.1 m; 2) h 2 = 0.2; 3) h 3 = 0.3; 4) 
h 4 = 0 . 4 ;  5) h 5=0 .5 ;  6) h 6 = 0 . 6 .  The curves  show the 
resu l t s  of the computer  calculations,  while the points 
are  experimental .  

An important  part  of this problem is to find the exact inverse t rans form of (3). Analytic methods 
(the expansion theorems ,  methods of contour integration, and tables of t ransforms)  are  not always adequate 
for this purpose.  It therefore  becomes  necessa ry  to use approximate methods for numerical ly  finding the 
inverse  t r ans form.  

We selected the Papoulis numer ica l  method [2] for finding the inverse t r ans fo rm of (3) because of its 
s implici ty and accuracy .  

According to this method the inverse t r ans fo rm is expanded in a ser ies  of Legendre polynomials of 
argument  exp(--at): 

M 

fr~ (t) = ~.~ BhP~ exp (-- at), (4) 

where Bk are  the expansion coefficients,  determined from the t r ans fo rm fro(P) at the points p = (2k + 1)o 
on the basis  of the sys tem of equations given in [2]. 

We first  studied the accuracy  of this method and the choice of the pa ramete r s  a and M providing 
sufficient accuracy  in finding the inverse t rans form.  

Calculations were ear r ied  out on an M-222 computer .  The inverse t r ans fo rms  found by this method 
agree within 0.01% with the exact t r ans fo rms  for aperiodic functions with ~ = 0.2 and M = 7. 

In related exper iments  we immersed  par t ic les  of a porous clay fil ler in a 1% solution of sulfuric acid 
and held them there for 3 days until the pores  were completely saturated with solution. Then beds of the 
porous par t ic les  with widths from h 1 = 0.1 m to h 6 = 0.6 m were formed in an extract ion column. 

Distilled water  was filtered through a bed at a velocity of v = 7- 10 -4 m/ see ,  held constant throughout 
all the experiments .  Samples of solution were taken from the r e a r  of a bed at time intervals  of t = 30 see,  
and the solution concentrat ion in each sample was determined with an T F L - 4 6 - 2  t i t ra tor ,  with the neutral i -  
zation point determined with a FH-340 pH meter .  

Figure I (curve 1) shows the experimental  output curve for a bed of width h 1 = 0.1 m, approximated 
by the sum of two exponential functions: 

fl (t) = 1 - -  0.8 exp (-- 0.690 - -  0:2 exp (-- 2.760. (5) 

Then Eq. (1) was used for computer  calculations of the output curves  for beds of widths h m = 2hi, 3hl, 
4hi, 5hi, 6hi; these curves  are  also shown in Fig.  1 (curves 2-6,  respect ively) .  

The calculated data are  compared with the experimental  data in this figure. 

Accordingly,  this method seems useful for predicting the kinetics of the extract ion of a dissolved 
substance from a bed of any width. 
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NOTATION 

is the pa r ame te r  of the Laplace t ransformat ion;  
if the change In the bed width; 
a re  the coefficients;  
a re the  even Legendre polynomials;  
is the solution concentrat ion at the r e a r  of the bed, %; 
is the initial solution concentra t ion,  %; 
is the t ime,  min; 
is the f i l t rat ion t ime,  rain. 
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